skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lindberg, Charlie A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Dynamic liquid crystal elastomers (LCEs) are a class of polymer networks characterized by the inclusion of both liquid crystalline monomers and dynamic covalent bonds. The unique properties realized through the combination of these moieties has produced a plethora of stimuli‐responsive materials to address a range of emerging technologies. While previous works have studied the incorporation of different dynamic bonds in LCEs, few (if any) have studied the effect of the specific placement of the dynamic bonds within an LCE network. A series of dynamic LCE networks were synthesized using a generalizable approach that employs a tandem thiol‐ene/yne chemistry which allows the location of the dynamic disulfide bond to be varied while maintaining similar network characteristics. When probing these systems in the LC regime, the thermomechanical properties were found to be largely similar. It is not until elevated temperatures (160–180 °C) that differences in the relaxation activation energies of these systems begin to materialize based solely on differences in placement of the dynamic bond throughout the network. This work demonstrates that through intentional dynamic bond placement, stress relaxation times can be tuned without affecting the LCE character. This insight can help optimize future dynamic LCE designs and achieve shorter processing times. 
    more » « less
  2. Pluripotency, which is defined as a system not fixed as to its developmental potentialities, is typically associated with biology and stem cells. Inspired by this concept, we report synthetic polymers that act as a single “pluripotent” feedstock and can be differentiated into a range of materials that exhibit different mechanical properties, from hard and brittle to soft and extensible. To achieve this, we have exploited dynamic covalent networks that contain labile, dynamic thia-Michael bonds, whose extent of bonding can be thermally modulated and retained through tempering, akin to the process used in metallurgy. In addition, we show that the shape memory behavior of these materials can be tailored through tempering and that these materials can be patterned to spatially control mechanical properties. 
    more » « less